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Abstract
Taylor’s law is a widely observed empirical pattern that
relates the variances to the means of population densi-
ties. We present four extensions of the classical Taylor’s
law (TL): (1) a cubic extension of the linear TL describes
the mean–variance relationship of human mortality at
subnational levels well; (2) in a time series, long-run
variance measures not only variance but also autoco-
variance, and it is a more suitable measure than vari-
ance alone to capture temporal∕spatial correlation; (3)
an extension of the classical equally weighted spatial
variance takes account of synchrony and proximity; (4)
robust linear regression estimators of TL parameters
reduce vulnerability to outliers. Applying the proposed
methods to age-specific Japanese subnational death rates
from 1975 to 2018, we study temporal and spatial varia-
tions, compare different coefficient estimators, and inter-
pret the implications. We apply a clustering algorithm to
the estimated TL coefficients and find that cluster mem-
berships are strongly related to prefectural gross domes-
tic product. The time series of spatial TL coefficients
has a decreasing trend that confirms the narrowing gap
between rural and urban mortality in Japan.
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1 INTRODUCTION

Demographers often study changes in the human population density, which is the number of
people per unit of area, of different regions in terms of the births and deaths within each region
and migration among regions through a multistate modelling framework (e.g. Rogers, 1995,
2008). Ecologists also share this multistate modelling framework for studying the density of
spatially separated populations of a single or of multiple species (e.g. Cohen & Saitoh, 2016;
Cohen et al., 2013, 2016; Dey & Joshi, 2006; Gilpin & Hanski, 1991; Hanski, 1999). In entomol-
ogy, Taylor (1961) and his collaborators (Perry & Taylor, 1985; Taylor, 1984; Taylor & Woiwod,
1980, 1982; Taylor et al., 1978, 1980) observe that in many species, the logarithm of the vari-
ance of the density of a set of comparable populations is an approximately linear function of
the logarithm of the mean density, for example log (variance) = log(a) + b × log (mean) for
some parameters a > 0 and b. Throughout this paper, we consider the logarithm to base 10.
This relationship became known as Taylor’s law (TL) of fluctuation scaling (Eisler et al., 2008;
Taylor, 2019).

Mortality rates as a statistical summary of a population’s survival patterns affect population
growth and density (e.g. Tarsi & Tuff, 2012). Japan, as the nation with the highest life expectancies
at age 65 and above among all countries in the world, is facing tremendous pressure on its existing
pension, health and aged care systems caused by population ageing (Coulmas, 2007). Identify-
ing the spatial variation of Japanese mortality across all 47 prefectures and temporal trends of
mortality could assist government policymakers and planners in developing national pension
reforms.

There are three main methodological contributions in this paper. Applications of TL to human
age-specific mortality rates have described linear relationships of log variance to log mean for
national populations of a dozen OECD countries including Japan (see, e.g. Bohk et al., 2015;
Cohen et al., 2018a,b). Recently, a quadratic extension of TL is considered in modelling US county
population distributions by Xu and Cohen (2019). TL has also been used to study human pop-
ulation by Xu et al. (2017) and Cohen et al. (2018) and Naccarato and Benassi (2018). The TL
coefficients can be seen as a summary statistic for analysing human mortality. One can apply a
clustering algorithm, such as K-means, based on the estimated TL coefficients to identify cluster
memberships. Analysing differentials in mortality of various prefectures is beneficial for deter-
mining the national and subnational administrations’ allocation of current and future resources.
We further extend TL to include a cubic term and show that the proposed model can better capture
the mean-variance relationship of subnational age-specific mortality rates in Japan. The second
contribution of this paper is that we compute the long-run variance instead of variance alone. In
time series analysis, long-run variance captures not only the variance but also includes autocovari-
ance. Thus, the long-run variance encompasses more information and is a more suitable summary
statistic for a time series. By regressing the logarithm of the long-run variance against the loga-
rithm of the mean, we obtain modified TL coefficient estimators. To sum up temporal and spatial
variations of mortality rates in a single parameter, we also consider a novel spatial–temporal TL
based on a long-run spatial variance measure. Third, in using TL to describe Japanese age-specific
mortality, short-term fluctuations of mortality caused by natural disasters, such as earthquakes
and tsunamis, should be excluded from the computation of the long-term TL coefficients (Aida
et al., 2017). To address this issue, we consider a robust estimator to down-weight the influence
of unusual mortality observations. In particular, we adopt the Hampel function (Hampel, 1974)
and Tukey’s biweight function (see, e.g. Hoaglin et al., 1983) in estimating the parameters of
our extended TL for Japanese subnational age-specific mortality rates from 1975 to 2018, and
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YANG et al. 1981

compare the robust estimates to the ordinary least squares (OLS) estimates of Bohk et al. (2015)
and Cohen et al. (2018a).

Throughout this paper, we consider three variations of TL models: the spatial TL, the tempo-
ral TL and the spatial–temporal TL. First, for each of the 47 prefectures of Japan, we regress the
logarithm of variance of age-specific mortality rates to the logarithm of the mean for years from
1975 to 2018. This approach estimates a temporal TL. Second, for each year during the considered
44-year period, a regression model is fitted to the logarithm of mean and the logarithm of vari-
ance of age-specific mortality rates of various geographical locations. This approach estimates a
spatial TL. The current paper is the first to apply spatial or temporal TL to study subnational mor-
tality patterns to the best of our knowledge. Third, we propose and apply a version of TL where
the dependent variable is an integrated measure of both temporal and spatial variation, taking
account of both temporal and spatial correlations.

The rest of the paper is organized as follows: In Section 2, we introduce the Japanese subna-
tional mortality data before presenting the classical and robust estimators for estimating the slope
parameters in the spatial or temporal TL. In Section 3, we present extensions of TL estimation
methods. In Section 4, we compare performances of different TL estimation methods using the
weighted spatial TL, long-run temporal TL and spatial–temporal TL to analyse the Japanese mor-
tality data. In Section 5, we summarize our main empirical discoveries about Japan’s mortality
patterns by prefecture and present some ideas on how the methodology presented can be further
extended.

2 DATA AND METHODS

2.1 Age-specific mortality rates for 47 Japanese prefectures

Many OECD countries consider the remarkable increase in life expectancy as one of the great-
est achievements of the last century (OECD, 2019). As population ageing has been one of the
main driving forces in pension policies and reforms, the patterns of improvement in age-specific
mortality rates have attracted the interests of government policymakers and planners. In par-
ticular, subnational forecasts of age-specific mortality rates help inform policy within local
regions.

We study Japanese age-specific mortality rates disaggregated by sex group (male, female and
total) and by 47 prefectures from 1975 to 2018 obtained from the Japanese Mortality Database
(2021). Ages from 0 to 99 are considered in single years of completed age, while the last age group
contains all ages at and beyond 100, leading to a total of 101 (e.g. 0, 1, … , 100) integer ages.
Denote the death counts at age u in year t as dt(u) and the population of age u at 30 June in year
t (also known as the ‘exposure-to-risk’ or as ‘life-years lived’) as Lt(u). We consider continuous
functions of mortality such that

t(u) =
dt(u)
Lt(u)

, u ∈ [0, 100], t = 1975, … , 2018.

Figure 1 shows rainbow plots of the observed female and male age-specific mortality curves in
Japan from 1975 to 2018 in log10 scale. The time ordering of the curves follows the colour order
of a rainbow, where curves from the distant past are shown in red and the more recent curves are
shown in purple. The figures show typical mortality curves for a developed country. The pattern
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F I G U R E 1 Japanese age-specific mortality rates of females, males and totals (both sexes combined) from
age 0 to 100+ annually from 1975 to 2018, on log10 scale. The curves from the distant past are shown in red, while
the more recent curves are shown in purple. [Colour figure can be viewed at wileyonlinelibrary.com]

begins with rapidly decreasing mortality rates in the early years of life, followed by an increase
during the teenage years, a mortality bump (greater for males than females) for young adults and
a steady, roughly exponential rise from about the age of 30. Females have lower mortality rates
than males for all ages.

2.2 Comparison of prefectures with national averages

Figure 2 depicts the logarithm of the ratio of each age-specific mortality rate for each prefec-
ture to the average age-specific mortality rates for the whole country, allowing relative mortality
comparisons to be made. Blue represents positive values, and orange denotes negative values.
The prefectures are ordered geographically from north to south. The most northerly prefecture
(Hokkaido) is at the top of the panels, and the most southerly prefecture (Okinawa) is at the
bottom.

The top row of panels shows mortality rates for each prefecture and age, averaged over all
years. There are great differences between the prefectures for children, especially females, pos-
sibly due to socio-economic differences and accessibility of health services. The most southerly
prefecture, Okinawa, has particularly low mortality rates for older people; this is consistent with
the extreme longevity for which Okinawa is famous (see, e.g. Suzuki et al., 2004; Takata et al.,
1987; Willcox et al., 2007).

The bottom row of panels shows mortality rates for each prefecture and year, averaged over all
ages. Three observations with unusually high mortality rates are highlighted with dark blue. In
2011, in prefectures Miyagi (4) and Iwate (3), there was a large increase in mortality compared to
other prefectures. These are northern coastal regions, and the excessive relative mortality is due
to the tsunami of 11 March 2011. There is a corresponding decrease in relative mortality in some
other prefectures. In 1995, an increase in mortality for prefecture Hyōgo (28) corresponds with
the Kobe (great Hanshin) earthquake of 17 January 1995.

2.3 Classical estimation of the slope parameter

Taylor (1961), following several proposals by earlier ecologists, popularized a power law to
describe a pattern in ecology regarding the spatial or temporal variability of population density.
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F I G U R E 2 Mortality rates above the national average in blue and below the national average in orange, for
each prefecture and age (top three panels) and each prefecture and year (bottom three panels). The top panel
shows mortality rates averaged over the years, while the bottom panel shows those averaged over the ages.
Prefectures are numbered geographically from north (Hokkaido, 1) to south (Okinawa, 47). [Colour figure can be
viewed at wileyonlinelibrary.com]

Taylor’s law (TL) describes a linear relationship between the logarithms of the variance of
nonnegative measurements P (e.g. population size, density or mortality rates) and the associated
mean

log[Var(P)] = log a + b ⋅ log[E(P)] + 𝜖, (1)

where a > 0 and b are both constants, and 𝜖 is the Gaussian error with mean zero and constant
variance. Equation (1) is a simple linear model. Unlike the intercept, which depends on the unit
of measurement, the slope parameter is independent of the measurement unit. As the logarithm
of E(P) increases by one, the logarithm of Var(P) increases by a constant b. The parameters a and
b are usually estimated by OLS.

Temporal and spatial TL require different definitions of Var[t(u)] and E[t(u)]. Let N = 47
be the number of prefectures, and let T = 44 be the number of observation periods. A particular
series u in prefecture j has temporal mean and temporal variance defined as

ETemporal[ j(u)] = 1
T

T∑

t=1


j
t (u), j = 1, … ,N,

VarTemporal[ j(u)] = 1
T − 1

T∑

t=1

[


j
t (u) − ETemporal[ j(u)]

]2
. (2)

In contrast, a particular series u in year t has spatial mean and spatial variance defined as
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1984 YANG et al.

ESpatial[t(u)] =
1
N

N∑

j=1


j
t (u), t = 1, … ,T,

VarSpatial[t(u)] =
1

N − 1

N∑

j=1

[


j
t (u) − ESpatial[t(u)]

]2
. (3)

The expression (3) weights each prefecture equally. By contrast, Cohen et al. (2013) evaluated a
spatial TL for the populations of Norwegian regions, counties and municipalities weighting each
administrative unit equally, or by its population, or by its land area. These other weighting possi-
bilities may be worth exploring in the future. Benassi and Naccarato (2019) considered weighting
spatial population density in Italy according to surface of each area and population density in
each area.

2.4 Outliers for linear TL models

Apart from years that witnessed high mortality due to natural disasters, as shown in the bot-
tom panel in Figure 2, there are ages at which observed mortality rates deviate from TL during
the considered time period. Before applying the classical temporal and spatial TL specifications
introduced in Section 2.3 to Japanese subnational age-specific mortality rates, we first iden-
tify observations that distort the linear mean–variance structure on the logarithmic scale for
each prefecture according to Mahalanobis distances of each age between 0 and 100 (Kim, 2000).
Specifically, we consider a sequence of 2 × 1 vectors {xu =

(
log[Var(t(u))], log[E(t(u))]

)
⊤;u =

0, … , 100}, and define the Mahalanobis distance of xu from its mean vector 𝝁 as

MD =
√
(xu − 𝝁)⊤𝚺−1 (xu − 𝝁),

where 𝚺 is the covariance matrix of xu. The Mahalanobis distance has an advantage over
the commonly used Euclidean distance in identifying outliers in a collection of vectors
like xu as the Mahalanobis distance reflects correlations among components of xu. Using a
cut-off value obtained from the chi-square distribution 𝜒

2
0.95,df=2, we identify outlying pairs of(

log[Var(t(u))], log[E(t(u))]
)

for any particular age u in some prefectures when applying the
linear temporal TL, as shown in Figure A2 in the supplementary document. Nearly all identified
outliers are related to age intervals with the lowest number of observed deaths (i.e. 8 ≤ u ≤ 12
and u ≥ 95). Prefectures that experienced relatively large variations of observed deaths at these
ages between 1975 and 2018 may report large estimated temporal variances, contributing to the
identified temporal outlying pairs of

(
log[Var(t(u))], log[E(t(u))]

)
. In contrast, no outliers are

detected for the years 1975–2018 for the linear spatial TL specification (Figure A1 in the sup-
plementary document). This is because averaging all 44 prefectures smooths out influences of
abruptly abnormal observed deaths in any given year.

Observations inflating the variance of both components of xu but having little influence on the
correlation (i.e. in regression diagnostics, observations with large leverage but small residuals)
may be reported with Mahalanobis distances slightly larger than the cut-off (see, e.g. section 4 of
Kim, 2000). We exclude an observation from the identified outliers if its studentized residual (see,
e.g. Faraway, 2014, for definition) is smaller than the critical value t0.95,df=99, where df = 99 is the
difference between the number of observations (101) and the number of estimated parameters (2)
in the linear TL.
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YANG et al. 1985

3 EXTENSIONS OF TL ESTIMATION

3.1 Cubic TL specification

To check for a potential nonlinear relationship between the log [Var(P)] and log [E(P)], Taylor
et al. (1978) considered a quadratic TL:

log[Var(P)] = log a2 + b2 ⋅ log[E(P)] + c2 ⋅ {log[E(P)]}2 + 𝜖. (4)

Xu and Cohen (2019) showed that the quadratic extension of the TL model described the spatial
and temporal variation of US county population abundance better than the linear TL specification
of (1). From Figure 2, children and teenagers (age less than 20), middle-aged adults (age between
30 and 50) and older people (age greater than 65) in a given prefecture may have different mortal-
ity patterns relative to the national average. In addition, a few prefectures report mortality rates
closely following the national average in every year between 1975 and 2018, while some prefec-
tures observe periodic fluctuations or abrupt changes in male mortality rates. Given the complex
patterns of temporal and spatial variances of mortality rates across various ages, we further extend
the quadratic TL to include a cubic term:

log[Var(P)] = log a3 + b3 ⋅ log[E(P)] + c3 ⋅ {log[E(P)]}2 + d3 ⋅ {log[E(P)]}3 + 𝜖. (5)

We conduct the standard t-tests to check if estimated coefficients are significantly different from
zero. When the p-value of a coefficient is less than 0.05 or, after Bonferroni correction, the p-value
is less than 0.05∕number of tests, the estimate is considered as significant. If the coefficient
d3 ≠ 0, then the cubic extension (5) of TL model is deemed most appropriate for describing the
mean-variance relationship. When d3 is not significant but a fitted quadratic TL yields a significant
c2, then we consider the quadratic TL as a suitable description of the mean-variance relation-
ship. If the slope coefficient b in Equation (1) is significant and all c2, c3 and d3 are insignificant,
the linear TL is considered as a suitable model of the relationship between log [Var(P)] and
log [E(P)].

We estimate coefficients and associated standard errors of the linear TL (1) (a and b), the
quadratic TL (4) ( a2, b2 and c2), and the cubic TL (5) ( a3, b3, c3 and d3), and also p-values corre-
sponding to each estimate. We also recorded the adjusted coefficient of determination (adj. R2) for
each of the fitted OLS TL and extended TL models. The (1 − adj. R2) value of the preferred model
(TL, quadratic TL or cubic TL) can be viewed as a measure of dissimilarity of age-specific mor-
tality rates among spatial or temporal units relative to the standard of the linear function (1), the
quadratic function (4), or the cubic function (5). Specifically, higher values of (1 − adj. R2) for the
spatial TL (linear, quadratic or cubic) indicate larger dissimilarity from the standard specification
in the spatial distribution of subnational age-specific mortality rates of Japan. Similarly, for the
temporal TL (linear, quadratic or cubic), greater (1 − adj. R2) reflects larger dissimilarity from
the standard specification in the temporal distribution of mortality rates within each prefecture.

3.2 Robust estimation of the slope parameter

Figure 2 shows exceptionally high mortality rates in particular prefectures due to disasters such
as earthquakes and tsunamis. Given that the OLS estimator is vulnerable to outliers in the mean
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1986 YANG et al.

and variance statistics, unusual mortality observations can significantly affect the OLS estimate
of the TL slope parameter.

We improve the robustness of estimating the slope parameter by considering the M-estimate.
In the robust statistics literature, the efficiency and the breakdown point are two commonly used
criteria to assess and compare various robust methods (see Donoho & Huber, 1983). The efficiency
is used to measure the relative efficiency of a robust estimator compared to the OLS estimators
when the error distribution is Gaussian and errors are free of outliers. In contrast, the breakdown
point measures the proportion of outliers an estimate can tolerate before the estimated value goes
to infinity.

In the robust estimation, we estimate TL coefficients simultaneously by solving optimization
problems. Specifically, using the linear specification of (1) as a example, we search for â and b̂
that minimize the objective function given by

∑

u
𝜌

{
log[Var(t(u))] − log a − b ⋅ log[E(t(u))]

𝜎

}
, (6)

where 𝜌(⋅) is a robust loss function, and 𝜎 is an error scale estimate. In this paper, we first consider
the most commonly used robust loss functions, namely the three-part loss function of Hampel
(1974) given by

𝜌(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

x for 0 ≤ |x| ≤ p
p sign(x) for p ≤ |x| ≤ q
p(r−|x|)

r−q
for q ≤ |x| ≤ r

0 for r ≤ |x|

,

with parameters p = 1.5 k, q = 3.5 k, and r = 8 k and k = 0.9016 for 95% efficiency. It is easy to see
that the Hampel’s robust loss function has two flat segments (i.e. p≤ |x|≤ q) and is not smooth at
several places (i.e. x = |p|,|q| or |r|). To retain the smoothness of functional data, we also consider
the Tukey’s bisquare loss function, given by

𝜌(x) =
⎧
⎪
⎨
⎪⎩

x
(

1 − x2

p2

)2
for |x| ≤ p

0 for |x| > p
,

which is smooth and continuous over the entire range of x. When p = 4.685, Tukey’s bisquare
function produces 95% efficiency (Hoaglin et al., 1983).

Using generic notations of mean and variance of age-specific mortality as well as the lin-
ear specification of (1), the estimation procedure for the spatial TL slope parameter can be
summarized as follows:

Step 1 Use the OLS method to estimate parameters (â, b̂).
Step 2 Calculate residual values 𝜖t = log[Var(t(u))] − log â − b̂ ⋅ log E[t(u)] for t = 1, 2, … ,

T.
Step 3 Calculate error scale estimate 𝜎t = 1.4826 ×MAD, where MAD = median|𝜖t −median

(𝜖t)|.

 1467985x, 2022, 4, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssa.12859 by JO

E
L

 E
. C

O
H

E
N

 - T
est , W

iley O
nline L

ibrary on [30/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YANG et al. 1987

Step 4 Calculate standardized residual values ut = 𝜖t∕𝜎t.
Step 5 Calculate the weighted value wt = 𝜌(ut) with a selected robust loss function 𝜌.
Step 6 Calculate âM and b̂M using weighted least squares (WLS) method with weights wt.
Step 7 Repeat Steps 2 to 6 above to obtain convergent TL coefficients âM and b̂M.

A robust temporal TL estimation procedure can be obtained easily by replacing the spatial
mean E[t(u)] and spatial variance Var[t(u)] with the corresponding temporal definitions, and
then computing the sample residuals {𝜖j, j = 1, … , N} over the N regions instead.

3.3 Spatial covariance

Empirical studies concerning spatial TL generally hypothesize that populations of interest
are identically (but not necessarily independently) distributed with finite mean and variance.
Population densities measured at geographically separated locations tend to be correlated, a
phenomenon known as synchrony in ecology. Synchrony decreases the estimated TL slope param-
eters of insects such as flying aphids (Reuman et al., 2017) and mammals such as Hokkaido
voles (Cohen & Saitoh, 2016). Human mortality rates also cluster among neighbouring countries
(Carracedo et al., 2018) and neighbouring subnational regions (Turi & Grigsby-Toussaint, 2017;
Yang et al., 2015). The spatial–temporal patterns indicate that estimation of TL coefficients for
age-specific mortality rates should consider the spatial correlation of metropolitan areas with high
population density.

Census results of Japan indicate that three major metropolitan areas (i.e. the Kanto, Chukyo,
and Kinki urban areas) together have 51.9% of the nation’s over 126 million population, with
23.2% of the national total located in 12 major cities (Statistics Bureau Ministry of Internal Affairs
and Communications, 2020). In the light of the urban–rural mortality differences in developed
countries, such as Japan (see, e.g. Li et al., 1994; Woods, 2003), we propose a new version of TL
that incorporates spatial covariance in estimating coefficients.

Moran’s I (Moran, 1950) has been commonly used to measure spatial correlation, returning
a value close to 1 when characteristics at various locations appear to be positively correlated.
However, the possibility of negative values makes Moran’s I not suitable to replace the variance
on the left side of (1) because the logarithm of a negative quantity is complex, not real-valued. To
overcome this issue, we modify the spatial autocorrelation measure of Geary (1954) to quantify
the variance of mortality in year t as

Cspatial
t (u) =

∑N
i=1

∑N
j=1wij

[
 i

t (u) − 
j
t (u)

]2

2
∑N

i=1
∑N

j=1wij
, i, j = 1, … N, (7)

where wij is a matrix of spatial weights with zeros on the diagonal (i.e. wii = 0) and with the
reciprocal of distance (in kilometres) between prefectures i and j as the remaining elements, that
is wij = 1∕distanceij for i ≠ j. Using the Geosphere package (Hijmans, 2019) in , the distance
between any two prefectures is computed according to the longitude and latitude coordinates
(World Cities Database, 2021) of their capital cities that host the majority of the population. The
spatial variance Cspatial

t (u) can replace the variance definition VarSpatial[t(u)] in the conventional
spatial TL estimation (where identical distributions for the considered regional populations are
assumed), taking account of distances between regions in the TL estimation.
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1988 YANG et al.

3.4 Long-run variance

In statistics, the long-run covariance enjoys a vast literature in the case of finite-dimensional time
series, since the seminal work of Bartlett (1946) and Parzen (1957). The long-run covariance is still
the most commonly used technique for smoothing the periodogram by employing a smoothing
weight function and a bandwidth parameter. In functional time series, long-run covariance plays
an important role in inference and modelling temporal dependence (see, e.g. Hörmann et al.,
2015; Kokoszka et al., 2017; Li et al., 2020; Rice & Shang, 2017). Most early applications of the
long-run covariance in the literature concern stationary functional time series (see, e.g. Hörmann
et al., 2015; Shang, 2019), whereas recent research relaxes the stationarity assumption (see, e.g.
Martínez-Hernández et al., 2020).

The long-run covariance has also been tested to work on a finite collection of age-specific mor-
tality functions (see, e.g. Gao et al., 2019). Since our focus is accounting for long-run temporal
dependence in the application of TL to age-specific mortality functions, we compute a long-run
variance function C(u), which can be viewed as the long-run covariance without cross-age
dependence, for series related to region j as

Cj(u) =
∞∑

𝓁=−∞
𝛾

j
𝓁(u) =

∞∑

𝓁=−∞
cov[ j

t (u),
j
t+𝓁(u)], u ∈ [0,100], (8)

where 𝓁 represents time lags of functions. From Equation (8), Cj(u) is independent of t, thus the
long-run variance function assumes stationarity. Replacing the robust temporal TL estimation
of (6) by the long-run variance Cj(u) enables consideration of the potential serial dependence of
mortality functions assuming no dependence across ages.

The long-run variance function Cj(u) can be estimated from a finite sample of functional
objects { j

t (u), t = 1, … ,T} by a kernel sandwich estimator (Andrews, 1991) defined as

Ĉ j
h,q(u) =

∞∑

𝓁=−∞
Wq

(
𝓁
h

)
�̂�

j
𝓁 (u), (9)

where h is called the bandwidth parameter, and the estimator of 𝛾 j
𝓁(u) is defined by

�̂�
j
𝓁(u) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1
T

T−𝓁∑
t=1

[


j
t (u) −

1
T

T∑
t=1


j
t (u)

] [


j
t+𝓁(u) −

1
T

T∑
t=1


j
t (u)

]
, 𝓁 ≥ 0;

1
T

T∑
t=1−𝓁

[


j
t (u) −

1
T

T∑
t=1


j
t (u)

] [


j
t+𝓁(u) −

1
T

T∑
t=1


j
t (u)

]
, 𝓁 < 0.

Wq(⋅) in Equation (9) is a continuous and symmetric weight function with bounded support of
order q defined on [−m,m] for some m > 0 satisfying

Wq(0) = 1,Wq(u) ≤ 1,Wq(u) = Wq(−u),Wq(u) = 0 if |u| > m.

The weight function Wq also satisfies

0 < lim
u→0

|u|−q(1 −Wq(u)) < ∞.

As with the kernel sandwich estimator in Equation (9), the crucial part is the estimation
of bandwidth parameter h. We estimate h through a data-driven approach using the plug-in
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YANG et al. 1989

algorithm of Rice and Shang (2017, section 2). The plug-in algorithm selects the optimal band-
width h that minimizes the asymptotic mean-squared normed error between the estimated and
actual long-run variance functions.

3.5 Long-run spatial variance

To consider both temporal and spatial dependence simultaneously, we combine the long-run
covariance (8) focusing on correlation of observed measurements over time with the spatial vari-
ance (7) focusing on correlation of observed measurements over space, and compute a long-run
spatial variance CLRspatial as

CLRspatial(u) =
∞∑

𝓁=−∞

(
𝜃 ⋅ Cspatial

t+𝓁 (u) + (1 − 𝜃)
N∑

j=1
𝛾

j
𝓁(u)

)
, (10)

where 𝜃 ∈ [0, 1] is a weight balancing the spatial and temporal components of CLRspatial(u).
The long-run spatial variance of (10) has the conventional long-run variance of (8) and the spa-

tial variance of (7) as its special cases, and as a consequence, simultaneously incorporates spatial
and temporal correlations of subnational mortality rates in various regions. We are interested in
temporal and spatial variances of mortality rates of the population at a given age u as in Equations
(2) and (3). Thus, measuring the dependence of mortality rates between different age groups is
out of the scope of (10).

Via a kernel estimator similar to Equation (9), the long-run spatial variance can be estimated
as

ĈLRspatial(u) =
∞∑

𝓁=−∞
Wq

(
𝓁
h

)⎛
⎜
⎜
⎜⎝

𝜗 ⋅

∑N
i=1

∑N
j=1wij

(
 i

t (u) − 
j

t+𝓁(u)
)2

2
∑N

i=1
∑N

j=1wij
+ (1 − 𝜗)�̂� j

𝓁(u)
⎞
⎟
⎟
⎟⎠

, (11)

where the optimal 𝜗 in practice can be selected to give the best model-fitting result or forecasting
performance, for example the smallest sample-size adjusted Akaike information criterion (AICc)
or the highest predicted R2.

4 RESULTS

4.1 Confirmation of TL specifications

We first compare model fitting performances of the linear TL (1) with the proposed quadratic TL
(4) and cubic (5) on the total, female and male series of subnational age-specific mortality rates
in Japan. We consider all observations without excluding any outliers in this step of model com-
parison. Table 1 summarizes the averaged regression statistics of the fitted linear and non-linear
TL models, including the adjusted coefficient of determination (adj. R2), the AICc information
criterion, and the number of estimated coefficients significantly different from 0 before and after
Bonferroni correction.

As expected, the fitted cubic TL models give the highest adj. R2 among all considered TL
specifications. A larger adj. R2 value means explanatory variables explain more variation in the
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YANG et al. 1991

response variable after adjusting for the increased number of predictors. Almost all estimated
coefficients of the fitted quadratic and cubic spatial TL extensions are significantly different from
0, indicating that the cubic TL model is favoured over the linear TL model for analysing mortality
data in the period 1975–2018. Similarly, under both temporal and spatial TL settings, the AICc for
cubic specifications are estimated to be smaller than quadratic and linear TL settings for all three
series. The lowest mean AICc scores indicate that cubic TL extensions are favoured in analysing
both temporal correlation and spatial synchrony of mortality in Japan. Moreover, the cubic tem-
poral TL model is favoured over the linear temporal TL model for all prefectures for female series
and a majority of 47 prefectures for total series, regardless of Bonferroni correction. For the male
series, the quadratic and cubic temporal TL models are preferred over the linear TL specifica-
tion for about half of all prefectures before Bonferroni correction. In contrast, the linear model
is preferred in more prefectures after Bonferroni correction of regression significance. Therefore,
considering the high explanatory power and the overall regression significance, the cubic TL spec-
ification is selected as a ‘best fit’ function of variance-mean relationship on the log-log scale for
Japan’s spatial and temporal subnational mortality rates. Figures A1 and A2 in the supplement
illustrate the excellent fit of the spatial cubic TL model for yearly mortality data and the temporal
TL model respectively for observations in each prefecture. In the remainder of this section, we
mainly report the results of fitted cubic TL models.

4.2 Weighted spatial TL

To apply the proposed spatial TL weighted by correlation among all 47 prefectures in Japan,
we first locate the city with the largest population in every prefecture and define weights as
reciprocal to distances (in kilometres) between the identified cities. Next, the spatial variance
(7) is computed and regressed on the spatial mean (3) for spatial TL coefficients. Figure 3
shows the estimated coefficients of spatial TL in the cubic specification (5) for subnational
total, female and male mortality series in Japan over 44 years from 1975 to 2018, obtained by
the OLS estimation method and robust estimation methods with Hampel weights and bisquare
weights.

The fitted spatial TL models and robust spatial TL models all report adj. R2 averaged over
44 years over 0.99 (i.e. 0.9940 (OLS), 0.9940 (Hampel), 0.9937 (bisquare) for total series, 0.9932
(OLS), 0.9931 (Hampel), 0.9927 (bisquare) for female series, and 0.9914 (OLS), 0.9912 (Hampel),
0.9900 (bisquare) for male series), indicating that almost all variation in log(spatial variance) of
subnational mortality can be explained by the corresponding log(spatial mean) values.

Apart from several â3 for the male series, the remaining estimated spatial TL coefficients
shown in Figure 3 are all significantly different from 0. Most robust TL parameter estimates,
especially those obtained with bisquare weights, are much lower than the OLS estimates before
1990. We believe robust estimates produce lower estimated coefficients in a given year because
a few ages have widely varying mortality rates across various prefectures in Japan, inflating spa-
tial variances. Figure 4 shows that the ordinary spatial variance (as defined in Equation 7) of all
series in 1985 grows steeply over age 60 in 1985. The increment of spatial variance for old ages
is reduced gradually over time, which reflects converging mortality trends of rural and urban
areas in Japan (e.g. Hao et al., 2012). These mortality trends are partly caused by rapid urbaniza-
tion in the country since the 1970s, reducing socioeconomic and health inequality in subnational
populations significantly (Fukuda et al., 2005). When regressing spatial variances of all ages
between 0 and 100 on their spatial means, the robust estimation methods scale down impacts of
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F I G U R E 3 Estimated spatial TL coefficients for subnational mortality series in Japan from 1975 to 2018
(averaged over 47 prefectures). From top to bottom, four rows of scatter plots correspond to a3, b3, c3 and d3 of
(5), respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

observations with considerable spatial variances near the upper end of the mortality curve and
thus give smaller estimated coefficients than the OLS method.

The surprisingly low spatial TL coefficient estimates in the year 2011 in Figure 3 relate to
the Great East Japan earthquake and tsunami that caused nearly 20,000 deaths in Iwate, Miyagi,
Fukushima prefectures, leading to increased mortality for both sexes (Nakahara & Ichikawa,
2013). The influence of natural disasters in 2011 on the spatial variance of mortality is more
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F I G U R E 4 Ordinary spatial variance and spatial mean of subnational mortality in Japan (missing values
in male series over 98–100 years of age). [Colour figure can be viewed at wileyonlinelibrary.com]

obvious for ages less than 60 (Figure 4). Since all victims are located in the north-eastern coastal
prefectures, abnormally large mortality observations of the affected prefectures exaggerated
weighted spatial variance of the whole country in 2011. Smaller spatial TL estimates â3 to d̂3 in
a cubic log-regression form capture this year’s sudden increase in variance over the mean mor-
tality range log (mean) ∈ (−4.02, −0.29). Spatial variances of male series fluctuate considerably
(Figure 4): spatial variances in 1985 are higher than those in 2011 for some ages within the 20–50
range. The OLS estimation method is influenced by such outlying observations located far from
the fitted cubic regression line. It thus gives inaccurate 2011 estimated coefficients that are not
very different from other years. In contrast, the robust algorithm with Tukey’s bisquare weights
yields distinctly lower estimated â3 to d̂3, consistent with estimates for total series and female
series in the same year. This empirical application indicates that the robust TL estimation meth-
ods can produce more reliable TL coefficients in the presence of outliers, contributing to more
accurate TL-based statistical analysis and inference.

4.3 Long-run temporal TL

Regressing the long-run variance of (9) on the temporal mean of (2) gives long-run temporal TL
coefficients. Figure 5 shows long-run temporal TL estimates in the cubic specification (5) for
Japanese subnational mortality series obtained by the OLS and the robust estimation methods.
The robust estimation with bisquare weights generally gives the lowest estimates for regression
intercepts and coefficients up to cubic orders. The total series and female series report small differ-
ences between parameters estimated by the OLS and robust methods. In contrast, the male series
show significantly different OLS and bisquare robust estimates, reflecting large fluctuations of
Japan male mortality before and after World War II (see, e.g. Jannetta & Preston, 1991, figure 4).

The long-run temporal TL coefficients estimated by the bisquare method tend to be lower than
OLS estimates for female and male series in many prefectures (Figure 5). Using results for the
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F I G U R E 5 Estimated temporal TL coefficients for subnational Japanese mortality series from 1975 to 2018
(44 years). From top to bottom, four rows of scatter plots correspond to a3, b3, c3 and d3 of (5), respectively.
[Colour figure can be viewed at wileyonlinelibrary.com]

male series as an example, two prefectures with the largest differences between OLS and bisquare
coefficient estimates in Figure 5 are Hyōgo (28) and Iwate (3). Large reductions in the robust
estimates are associated with Hyōgo and Iwate because the estimated long-run covariances of
mortality are inflated by the large number of deaths related to natural disasters.

Males in Hyōgo have long-run temporal variances of mortality lower than most other male
populations in Japan except for ages between 50 and 85 (Figure 6). High temporal variances of
mortality for people over 50 in Hyōgo are due to the great Hanshin earthquake that occurred
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F I G U R E 6 (a) Fitted TL models for male mortality series in Hyōgo and Iwate between 1975 and 2018.
(b) Empirical long-run temporal variance for ages between 0 and 100 used as the response in the fitted TL
models. (c) Empirical temporal mean for ages between 0 and 100 used as predictors in the fitted TL models.
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 K-means clustering memberships of long-run temporal TL coefficients obtained by the robust
method with bisquare weights. [Colour figure can be viewed at wileyonlinelibrary.com]

near Kobe in 1995, which significantly affected older people. Specifically, more than 60% of 5,502
fatalities of the earthquake were among those over 60 years old, and surviving older people tended
to be left behind as the most vulnerable after the disaster (Tanida, 1996). Similarly, Iwate suffered
catastrophic damage in the massive tsunami in 2011 with exceptionally high casualties in people
aged 65 and over (e.g. figure 2 in Nakahara & Ichikawa, 2013). The bisquare robust methods
mitigate influences of ages with high temporal variances on the estimation of the overall TL curve,
thus providing fitted temporal variances of mortality rates at elder ages much lower than those
obtained by the OLS method.

Figure 5 demonstrates the high similarity between Hampel and bisquare long-run temporal
TL estimates. Since we are interested in differences between robust long-run temporal TL esti-
mates and the conventional OLS estimates, the following analysis compares bisquare long-run
temporal TL estimates with OLS estimates. To further analyse the long-run temporal TL coef-
ficient estimates, we apply K-means clustering via principal component analysis (see, e.g. Ding
& He, 2004). We cluster the estimated long-run temporal TL coefficients into two groups based
on the total within-cluster sum of squares (shown in Figure A3 in the supplement) for the total,
female, and male series. For example, clustering results of bisquare long-run TL coefficients are
illustrated in Figure 7.

The first principal component capturing the largest variance of the long-run temporal TL
coefficient estimates is considered a new variable ‘Dimension 1’ (or ‘Dim 1’). In contrast,
the second principal component is ‘Dimension 2’ (or ‘Dim 2’). In Figure 7, all prefectures
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1996 YANG et al.

grouped into Cluster 1 have negative values for Dimension 1 whereas a large majority
of prefectures belonging to Cluster 2 have positive Dimension 1 values. Cluster 1 covers
15 of 17 prefectures in the megalopolis known as the Taiheiyō Belt in Japan (see, e.g.
Bienvenido-Huertas et al., 2020). In particular, all 9 prefectures in the roughly continuous urban
Tokyo-Nagoya-Osaka strip can be found in Cluster 1 for all three series. Hence, Dimension
1 differentiates prefectures with high economic output from the rest (presented in detail in
Table 2).

Long-run temporal TL coefficients obtained by OLS and robust methods are strongly pos-
itively correlated with Dimension 1 (Figure 8). Miyagi is highlighted to have the lowest
estimated TL coefficients for total and female series, while Hyōgo and Osaka are identified
to have the lowest TL estimates for male series. These three prefectures all experienced sud-
den increases in mortality due to earthquakes and tsunami (Nakahara & Ichikawa, 2013;
Tanida, 1996). Okinawa has the highest TL estimates for all three series, probably due to the
exceptional longevity in the prefecture (Poulain, 2011). Hence, Dimension 1, constructed as a
linear projection of long-run temporal TL coefficients, can effectively distinguish populations
enjoying low mortality consistently throughout 1975–2018 from those influenced by natural
disasters.

The socioeconomic status of a community is substantially associated with its mortality (see,
e.g. Anderson et al., 1997; Ben-Shlomo et al., 1996; Fukuda et al., 2005). Hence, we compare
Japan’s ranking of prefectures by total gross domestic product (GDP) and GDP per capita (GDPPP)
in 2016 published by OECD (2020) with detailed clustering memberships (Table 2). Fifteen
prefectures have both their females and males grouped into the Cluster 1 based on bisquare
TL estimates, whereas 23 prefectures have both females and males grouped into the Cluster 2
based on bisquare TL estimates. Thus, females and males in 38 of 47 prefectures are assigned
to concordant clusters based on bisquare estimates of cubic long-run temporal TL parameters.
In contrast, according to the OLS long-run temporal TL coefficients, only nine prefectures have
female and male series classified into the same cluster. Also, prefectures ranked between 1 and
22 by GDP have most of their total, female and male series classified into the first cluster.
In contrast, prefectures ranked lower than Gifu (21) by GDP have almost all mortality series
grouped into the second cluster. Highly consistent patterns between clustering results based on
bisquare estimates and GDP rankings confirm the hypothesis that economic activity is strongly
associated with mortality decline in post-war Japan (see, e.g. Tapia Granados, 2008). Estimat-
ing long-run temporal TL coefficients with bisquare weights reduces the influences of unusual
observations caused by natural disasters, providing better estimates than the conventional OLS
method.

Compared with GDP rankings, GDPPP rankings of prefectures match clustering results based
on either estimation method much more poorly. This is not surprising since rankings of health
expenditure per capita in Japan do not strictly follow the ordering of prefectural GDPPP, for
example Hokkaido (GDPPP ¥ 34,579,100) and Yamaguchi (GDPPP ¥ 40,002,100) reported more
real health-care expenditure per capita between 2001 and 2010 than Tokyo (GDPPP ¥ 75,456,500)
(Tamakoshi & Hamori, 2015). We compute odds ratios quantifying the strength of association
between GDP and GDPPP rankings and clustering results based on long-run temporal TL esti-
mates. Figure 7 shows 22, 17, and 22 prefectures in Cluster 1 for the total series, the female
series and the male series, respectively. To test whether prefectures in Cluster 1 also have high
economic output, for the total and male series we assign a label ‘High’ to the first 22 prefec-
tures ranked by GDP or GDPPP, and for the female series we assign a label ‘High’ to the first
17 prefectures ranked by GDP or GDPPP; we label all the remaining prefectures as ‘Low’. The
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YANG et al. 1997

T A B L E 2 Japanese prefectures ranked by 2016 total GDP (in Million ¥) and GDPPP (in ¥), with clustering
memberships based on long-run temporal TL coefficient estimates

Bisquare Cluster OLS ClusterPrefecture
(Index)

GDP
(Million ¥)

GDP
Ranking

GDPPP
(¥)

GDPPP
Ranking Total Female Male Total Female Male

Tokyo (13) 104,470,000 1 7,668,090 1 1 1 1 1 1 1

Aichi (23) 39,409,400 2 5,249,690 2 1 1 1 1 1 1

Osaka (27) 38,995,000 3 4,414,690 8 1 1 1 1 1 1

Kanagawa (14) 34,609,300 4 3,784,510 26 1 1 1 1 1 1

Saitama (11) 22,689,700 5 3,112,870 45 1 1 1 1 1 1

Hyogo (28) 20,937,800 6 3,793,080 25 1 1 1 1 1 1

Chiba (12) 20,391,600 7 3,269,980 44 1 1 1 1 1 1

Fukuoka (40) 19,144,000 8 3,750,790 29 1 1 1 1 1 1

Hokkaido (1) 19,018,100 9 3,553,460 34 1 1 1 1 1 1

Shizuoka (22) 17,044,400 10 4,621,580 3 1 1 1 1 1 1

Ibaraki (8) 13,056,700 11 4,494,570 7 1 1 2 1 1 1

Hiroshima (34) 11,944,700 12 4,210,320 12 1 2 2 2 1 1

Kyoto (26) 10,487,600 13 4,025,930 18 1 1 1 1 1 1

Miyagi (4) 9,475,480 14 4,066,730 16 1 2 1 1 1 1

Tochigi (9) 8,958,400 15 4,556,660 4 2 1 2 2 2 1

Niigata (15) 8,883,970 16 3,886,250 23 1 1 1 1 1 1

Gunma (10) 8,528,500 17 4,335,790 10 1 2 2 1 2 1

Nagano (20) 8,272,260 18 3,961,810 21 1 1 1 1 1 1

Mie (24) 8,220,910 19 4,546,960 5 1 2 1 2 1 1

Fukushima (7) 7,917,870 20 4,165,110 13 2 1 1 1 1 2

Okayama (33) 7,681,160 21 4,011,050 20 1 2 2 1 1 1

Gifu (21) 7,621,800 22 3,769,440 27 2 1 1 2 2 1

Shiga (25) 6,381,690 23 4,516,420 6 2 2 1 2 2 1

Yamaguchi (35) 6,087,530 24 4,366,950 9 2 2 2 2 1 2

Kumamoto (43) 5,927,630 25 3,341,390 40 1 2 1 1 1 1

Kagoshima (46) 5,381,810 26 3,287,610 42 2 2 2 1 1 1

Ehime (38) 5,074,180 27 3,690,310 30 2 2 2 2 2 2

Iwate (3) 4,674,260 28 3,686,320 31 2 2 2 2 2 2

Ishikawa (17) 4,623,030 29 4,016,530 19 2 2 2 2 2 2

Aomori (2) 4,580,260 30 3,542,350 35 2 2 2 2 2 2

Toyama (16) 4,566,280 31 4,303,760 11 1 2 2 2 2 1

Nagasaki (42) 4,566,160 32 3,340,280 41 2 2 2 2 2 2

Oita (44) 4,353,380 33 3,752,920 28 2 2 1 2 2 2

(Continues)
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1998 YANG et al.

T A B L E 2 (Continued)

Bisquare Cluster OLS ClusterPrefecture
(Index)

GDP
(Million ¥)

GDP
Ranking

GDPPP
(¥)

GDPPP
Ranking Total Female Male Total Female Male

Okinawa (47) 4,281,960 34 2,975,650 46 2 2 2 2 2 2

Yamagata (6) 4,039,810 35 3,629,660 33 2 2 1 2 2 1

Kagawa (37) 3,802,230 36 3,911,760 22 2 2 2 2 2 2

Miyazaki (45) 3,683,970 37 3,361,280 38 2 2 2 2 2 2

Wakayama (30) 3,676,470 38 3,853,740 24 2 2 2 2 2 2

Nara (29) 3,650,720 39 2,692,270 47 1 2 2 2 2 2

Akita (5) 3,451,340 40 3,417,160 37 2 2 2 2 2 1

Yamanashi (19) 3,365,640 41 4,054,980 17 2 2 2 2 2 2

Fukui (18) 3,211,130 42 4,106,310 14 2 2 2 2 2 2

Tokushima (36) 3,071,970 43 4,095,960 15 2 2 2 2 2 2

Saga (41) 2,851,910 44 3,444,340 36 2 2 2 2 2 2

Shimane (32) 2,520,650 45 3,653,110 32 2 2 2 2 2 2

Kochi (39) 2,419,430 46 3,355,660 39 2 2 2 2 2 2

Tottori (31) 1,864,070 47 3,270,300 43 2 2 2 2 2 2

numbers of prefectures with ‘High’ and ‘Low’ labels in Clusters 1 and 2 are then organized into
2 × 2 tables (Table 3). Odds ratios of GDP and GDPPP rankings are computed following the
standard method for contingency tables. In Table 3, the larger empirical odds ratios indicate
stronger associations between clustering memberships and rankings (by GDP or GDPPP). For
female series, clustering memberships based on bisquare estimates are seen to have the high-
est association with total GDP rankings of prefectures, as indicated by an odds ratio of 42.00.
For male and total series, clustering memberships based on OLS estimates are seen to have
the strongest association with total GDP rankings, as indicated by odds ratios of 115.00 and
66.50, respectively. In summary, clustering results based on long-run temporal TL coefficient
estimates have stronger associations with prefectural total GDP rankings, confirming that sub-
national mortality rates in Japan are substantially associated with the economic status of each
prefecture.

4.4 Spatial–temporal TL

We combine spatial and temporal information of Japanese subnational age-specific mortality
rates to compute the long-run spatial–temporal variance CLRspatial according to Equation (11).
Then we regress the logarithm of CLRspatial on the logarithm of overall mean mortality aver-
aged over space and time as Eoverall = (NT)−1∑T

t=1
∑N

j=1
j

t (u) for long-run spatial–temporal
TL coefficients. Table 4 summarizes regression statistics of long-run spatial–temporal TL
under the cubic specification of (5). Apart from the ĉ3 obtained by the OLS method
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YANG et al. 1999
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F I G U R E 8 Estimated temporal TL coefficients (averaged over 1975–2018) against Dimension 1 of k-means
clustering results shown in Figure 7. [Colour figure can be viewed at wileyonlinelibrary.com]
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2000 YANG et al.

T A B L E 3 Odds ratios quantifying association between clustering results based on long-run temporal TL
coefficient estimates and prefecture rankings based on indicators of economic activity

GDP GDPPP

Series Cluster High Low Odds ratio High Low Odds ratio

Bisquare cluster

Total 1 19 3 46.44 13 9 2.57

2 3 22 9 16

Female 1 14 3 42.00 7 10 1.40

2 3 27 10 20

Male 1 18 4 23.62 11 11 1.27

2 4 21 11 14

OLS cluster

Total 1 20 2 115.00 13 9 2.57

2 2 23 9 16

Female 1 15 5 37.50 8 12 1.33

2 2 25 9 18

Male 1 21 6 66.50 15 12 2.32

2 1 19 7 13

for males, all the remaining regression coefficients are highly significant at 95% confi-
dence levels. Minimal differences can be observed in fitted long-run spatial–temporal TL
regressions obtained by OLS and robust estimation methods for particular mortality series
(Figure 9).

In Table 4 and Figure 9, we report a selection of weighting coefficients 𝜃 = 0.05, 0.50, 0.95.
Fitting results of other possible weights are included in Figure A4 in the supplement. The
choice of 𝜃 = 0.05 corresponds to ĈLRspatial focusing mostly on temporal variation of the con-
sidered mortality series, whereas 𝜃 = 0.95 concentrates on spatial differences of mortality.
For any particular series and estimation method, it can be seen that at 𝜃 = 0.95 the small-
est AICc is reached while the largest predicted R2 is also achieved. Thus, the spatial variance
component in Equation (11) dominates the temporal variance component in the optimal long-run
spatial–temporal TL.

In addition to the cubic TL specification, we further apply the conventional linear TL spec-
ification (1) to analyse the estimated long-run spatial–temporal TL. All linear spatial–temporal
TL slope estimates for female, male and total series fall in the interval [1.75, 1.88], confirm-
ing the range of [1, 2] for human TL slopes based on population density and age-specific
mortality rates (Bohk et al., 2015; Xu & Cohen, 2019) and for the population density or
population sizes of many non-human animals and plants (Anderson et al., 1982). The high
predicted R2 of the fitted models suggests excellent explanatory power of linear TL regres-
sions. Thus, the proposed long-run spatial–temporal TL can summarize spatial and temporal
changes in human mortality rates in a single coefficient that is straightforward to use in
practice.
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F I G U R E 9 Fitted cubic long-run spatial–temporal TL regressions for 𝜃=0.05,0.50,0.95 for total, female and
male mortality series in Japan. [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSION

We propose several extensions of the log-linear TL model of human mortality. These proposed
methods incorporate long-term variation and spatial correlation of non-negative measurements
for multiple populations and minimize the impact of unusual observations on the estimated
parameter. Applied to age-specific mortality rates of 47 prefectures in Japan from 1975 to 2018,
the proposed new methods provide slope estimates less influenced by extreme events than the
conventional TL. The proposed long-run spatial covariance can be applied to a wide range of
research topics beyond animal and plant populations, for example analysing spatial and temporal
distributions of firms in various industry sectors.

The principal new empirical results that emerge from our analysis of the Japanese prefectural
age-specific mortality rates are:

1. Male and female humans in Japan have different temporal and spatial distributions of mor-
tality rates. The cubic TL specification is better at capturing patterns of human mortality than
the conventional linear TL model.

2. Natural disasters causing significant fatalities, such as the great Hanshin earthquake in 1995
and the massive tsunami in 2011, inflate spatial variances of subnational mortality. The robust
estimation method with bisquare weights can reduce the influences of natural disasters on
spatial TL estimates.

3. Temporal variances of mortality are different for 47 prefectures, indicating diverse changes
in mortality in Japan. One reason for the uneven temporal variances is natural disasters
increasing mortality in certain years for a group of prefectures. Another important factor for
heterogeneity in temporal variances of mortality is the unbalanced economic development in
Japan. Populations living in prefectures with high GDP tend to have TL coefficient estimates
different from those with low GDP after removing outliers caused by earthquakes and tsunami.

4. As one referee pointed out, distances between prefectures as a measurement of spatial
correlation between areas may not perfectly reveal asymmetric relationships between loca-
tions. For example, municipalities with better economic conditions and higher human
capital stock in Japan are more likely to experience positive domestic population inflow
(Higa et al., 2019). In contrast, non-metropolitan areas are experiencing depopulation and
rapid ageing of residents. The impacts of domestic migration of the working-age pop-
ulation on the mortality patterns of large metropolitan cities, such as Tokyo, would be
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better captured by human capital and wealth flows from other prefectures than sim-
ply using geographical distances. In future research, we would explore how domes-
tic migration data can improve analysing the spatial correlation of human mortality
in Japan.

Apart from the Japanese subnational mortality, the methods can also be applied to other sub-
national mortality, including Australia, Canada, France and the United States. Apart from human
mortality rates, the proposed method can also be applied to animal and plant populations, for
example voles in Hokkaido. To facilitate reproducibility, the code for implementing the pro-
posed methods and the Shiny app for visualizing the Japanese subnational mortality patterns are
available at https://github.com/hanshang/Taylor_law.

The current paper proposes a cubic TL specification that uses scalar coefficients {a3, b3, c3, d3}
in Equation (5) to model human mortality rates for all ages between 0 and 100. Com-
pared to the conventional linear TL model, the cubic TL model fits mortality rates better in
the age intervals [1,10] and [90,100]. It is possible to integrate the age-varying relationship
between mean and variance of human mortality into the TL coefficients. We shall exam-
ine a varying-coefficient TL model whose coefficients are smooth functions of ages in future
research.

Our analysis extends prior research by taking account of correlations in mortality rates of each
age group over time (autocorrelations) and across space (synchrony). The proposed methods can
be further extended to incorporate correlations in mortality rates between different ages over time
or across space, which topic is left for future research.
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